EigenGP: Sparse Gaussian process models with data-dependent eigenfunctions

نویسندگان

  • Yuan Qi
  • Bo Dai
  • Yao Zhu
چکیده

Gaussian processes (GPs) provide a nonparametric representation of functions. However, classical GP inference suffers from high computational cost and it is difficult to design nonstationary GP priors in practice. In this paper, we propose a sparse Gaussian process model, EigenGP, based on the Karhunen-Loève (KL) expansion of a GP prior. We use the Nyström approximation to obtain data dependent eigenfunctions and select these eigenfunctions by evidence maximization. This selection reduces the number of eigenfunctions in our model and provides a nonstationary covariance function. To handle nonlinear likelihoods, we develop an efficient expectation propagation (EP) inference algorithm, and couple it with expectation maximization for eigenfunction selection. Because the eigenfunctions of a Gaussian kernel are associated with clusters of samples – including both the labeled and unlabeled – selecting relevant eigenfunctions enables EigenGP to conduct semi-supervised learning. Our experimental results demonstrate improved predictive performance of EigenGP over alternative state-of-the-art sparse GP and semisupervised learning methods for regression, classification, and semisupervised classification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EigenGP: Gaussian Process Models with Adaptive Eigenfunctions

Gaussian processes (GPs) provide a nonparametric representation of functions. However, classical GP inference suffers from high computational cost for big data. In this paper, we propose a new Bayesian approach, EigenGP, that learns both basis dictionary elements—eigenfunctions of a GP prior—and prior precisions in a sparse finite model. It is well known that, among all orthogonal basis functio...

متن کامل

Estimating Derivatives for Samples of Sparsely Observed Functions, with Application to On-line Auction Dynamics

It is often of interest to recover derivatives of a sample of random functions from sparse and noise-contaminated measurements, especially when the dynamics of underlying processes is of interest. We propose a novel approach based on estimating derivatives of eigenfunctions and expansions of random functions into their eigenfunctions to obtain a representation for derivatives. In combination wi...

متن کامل

Speech enhancement based on hidden Markov model using sparse code shrinkage

This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...

متن کامل

Speech Enhancement using Adaptive Data-Based Dictionary Learning

In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...

متن کامل

Sparse Representation for Gaussian Process Models

We develop an approach for a sparse representation for Gaussian Process (GP) models in order to overcome the limitations of GPs caused by large data sets. The method is based on a combination of a Bayesian online algorithm together with a sequential construction of a relevant subsample of the data which fully specifies the prediction of the model. Experimental results on toy examples and large ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012